BRIEF COMMUNICATIONS

PREPARATIVE SYNTHESIS OF VANILLIN AND VANILLAL ESTERS OF SEVERAL CARBOXYLIC ACIDS

E. A. Dikusar and N. G. Kozlov

UDC 547.362

The natural plant aldehydophenols vanillin (4-hydroxy-3-methoxybnzaldehyde) (1a) and its close homolog vanillal (4-hydroxy-3-ethoxybenzaldehyde) (1b) are widely used in the food and perfume industries [1, 2].

Our goal was to prepare new derivatives of the natural compounds as esters of **1a** and **1b** with several aromatic and functionally substituted alkylcarboxylic acids (**3a-u** and **4a-e**). The esters of **3a-u** and **4a-e** were synthesized using a method that consists of reacting **1a** or **1b** with the corresponding acyl chlorides of the aromatic and functionally substituted alkylcarboxylic acids (**2**) in absolute CH_2Cl_2 with added pyridine. Acyl chlorides of the following acids (**2**) were used in the ester synthesis: capric, stearic, acrylic, methacylic, oleic, benzoic, *p*-toluic, phenylacetic, 2-phenylbutyric, cinnamic, 2-(*p*-toluyloxy)propionic, succinic, *o*-chlorobenzoic, *p*-chlorobenzoic, *o*,*p*-dichlorobenzoic, *o*,*p*-dichlorophenyoxyacetic, bromoacetic, 1,2-dibromohydrocinnamic, *p*-bromobenzoic, *m*-nitrobenzoic, and *p*-nitrobenzoic. This reaction converted the starting phenols **1a** and **1b** into the corresponding esters **3a-u** and **4a-e** in yields of 80-90%.

3a - u: $R = CH_3$; **4a** - e: $R = CH_2-CH_3$; **3a**: $R_1 = (CH_2)_8CH_3$; **3b**: $(CH_2)_{16}CH_3$; **3c**: $CH=CH_2$; **3d**: $C(CH_3)=CH_2$; **3e**: $cis-(CH_2)_7CH=CH(CH_2)_7CH_3$; **3f**: C_6H_5 ; **3g**: $n-C_6H_4CH_3$; **3h**: $CH_2C_6H_5$; **3i**: $CH_2CH(CH_3)C_6H_5$; **3j**: $trans-CH=CHC_6H_5$; **3k**: $n-(CH_2)_2OC_6H_4CH_3$; **3l**: $\frac{1}{2}-(CH_2)_2-$; **3m**: $o-C_6H_4Cl$; **3n**: $n-C_6H_4Cl$; **3o**: o, $n-C_6H_3Cl_2$; **3p**: o, $n-CH_2OC_6H_3Cl_2$; **3q**: CH_2Br ; **3r**: $CHBrCHBrC_6H_5$; **3s**: $n-C_6H_4Br$; **3t**: $m-C_6H_4NO_2$; **3u**: $n-C_6H_4NO_2$; **4a**: $R_1 = C_6H_5$; **4b**: $n-C_6H_4CH_3$; **4c**: $\frac{1}{2}-(CH_2)_2-$; **4d**: $o-C_6H_4Cl$; **4e**: $n-C_6H_4Cl$

Aromatic compounds **3a-u** and **4a-e** contain aldehyde, ester, and methoxy or ethoxy groups in addition to several substituents associated with the structures of the starting carboxylic acid acyl chlorides (**2**). This enables them to be used as synthons for further chemical trnasformations. The prepared esters are expected to be promising for studying their antimicrobial and radioprotector activities [3, 4].

The structures of the synthesized esters were confirmed by elemental analysis, cryoscopic molecular-weight determination, and PMR, IR, and UV spectra. The purity of the prepared compounds according to PMR spectroscopy was $98 \pm 1\%$.

Vanillin and Vanillal Esters 3a-u and 4a-e (general method). A solution of vanillin or vanillal (**1a** or **1b**, 0.2 mol) in absolute CH_2Cl_2 (500 mL) was treated with absolute pyridine (0.25 mol) and in small portions with stirring and shaking with the appropriate carboxylic acid acyl chloride (**2**, 0.2 mol, 0.1 mol for succinic acid). The reaction mixture was boiled for 1 h.

Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072, Minsk, ul. Surganova, 13, e-mail: loc@ifoch.bas-net.by. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 74-75, January-February, 2005. Original article submitted August 2, 2004.

The CH₂Cl₂ was distilled by heating on a water bath. The solid was dissolved in benzene (500 mL), washed three times with both water and NaHCO₃ solution (5%), and dried over CaCl₂. The solvent was removed. The solid was recrystallized from benzene—hexane or distilled in vacuo. The resulting esters have the following melting or boiling points, d_{20}^{20} , n_D^{20} , and compositions: **3a**, mp 35-36°C, $C_{18}H_{26}O_4$; **3b**, mp 32-33°C, $C_{26}H_{42}O_4$; **3c**, bp 140-141°C, (p = 0.5 mm Hg), d_{20}^{20} 1.3428, n_D^{20} 1.5555, $C_{11}H_{10}O_4$; **3d**, mp 46-47°C, $C_{12}H_{12}O_4$; **3e**, d_{20}^{20} 1.1563, n_D^{20} 1.5040, $C_{26}H_{40}O_4$; **3f**, mp 71-72°C, $C_{15}H_{12}O_4$; **3g**, mp 91-92°C, $C_{16}H_{14}O_4$; **3h**, bp 179-180°C (p = 0.5 mm Hg), d_{20}^{20} 1.2835, n_D^{20} 1.5810, $C_{16}H_{14}O_4$; **3i**, mp 69-70°C, $C_{18}H_{18}O_4$; **3j**, mp 59-60°C, $C_{17}H_{14}O_4$; **3k**, mp 63-64°C, $C_{18}H_{18}O_5$; **3l**, mp 130-131°C, $C_{20}H_{18}O_8$; **3m**, mp 91-92°C, $C_{15}H_{11}ClO_4$; **3n**, mp 98-99°C, $C_{15}H_{11}ClO_4$; **3o**, mp 102-103°C, $C_{15}H_{10}Cl_2O_4$; **3p**, mp 114-115°C, $C_{16}H_{12}Cl_2O_5$; **3q**, mp 43-44°C, $C_{10}H_9BrO_4$; **3r**, mp 82-83°C, $C_{17}H_{14}Br_2O_4$; **3s**, mp 108-109°C, $C_{17}H_{16}O_4$; **4c**, mp 114-115°C, $C_{22}H_{22}O_8$; **4d**, mp 83-84°C, $C_{16}H_{13}ClO_4$; **4e**, mp 84-85°C, $C_{16}H_{13}ClO_4$.

ACKNOWLEDGMENT

The work was supported financially by the Belorussian Republic Foundation for Basic Research (grant X 03-079).

REFERENCES

- 1. L. M. Shulov and L. A. Kheifits, *Fragrances and Intermediates for Perfume—Cosmetic Production* [in Russian], Agropromizdat, Moscow (1990).
- 2. Y. Shaikh, *Specialty Aroma Chemicals in Flavors and Fragrance*, Allured Publishing Corporation, Carol Stream, Illinois (2002).
- 3. N. N. Suvorov and V. S. Shashkov, *Chemistry and Pharmacology of Prophylactic Agents for Radiation Disease* [in Russian], Atomizdat, Moscow (1975), p. 230.
- 4. N. N. Karkishchenko, *Ecological Pharmacology* [in Russian], Izotekst, Moscow (1990), Vol. 1, p. 342.